Langlands Reciprocity for C ∗-Algebras

نویسندگان

چکیده

We introduce a $C^*$-algebra $\mathscr{A}_V$ of variety $V$ over the number field $K$ and $\mathscr{A}_G$ reductive group $G$ ring adeles $K$. Using Pimsner's Theorem we construct an embedding $\mathscr{A}_V\hookrightarrow \mathscr{A}_G$, where is $G$-coherent variety, e.g. Shimura $G$. The analog Langlands reciprocity for $C^*$-algebras. It follows from $K$-theory inclusion $\mathscr{A}_V\subset\mathscr{A}_G$ that Hasse-Weil $L$-function product automorphic $L$-functions corresponding to irreducible representations

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Langlands Reciprocity for Algebraic Surfaces

Twenty-five years ago R. Langlands proposed [L] a “fantastic generalization” of Artin-Hasse reciprocity law in the classical class field theory. He conjectured the existence of a correspondence between automorphic irreducible infinite-dimensional representations of a reductive groupG over a global number field on the one hand, and (roughly speaking) finite dimensionsional representations of the...

متن کامل

Langlands reciprocity for certain Galois extensions

Article history: Received 29 April 2016 Received in revised form 14 January 2017 Accepted 6 February 2017 Available online 31 March 2017 Communicated by L. Smajlovic Tribute to Pulse Victims MSC: 11R39 11F70 11F80

متن کامل

Affine Algebras, Langlands Duality and Bethe Ansatz

By Langlands duality one usually understands a correspondence between automorphic representations of a reductive group G over the ring of adels of a field F , and homomorphisms from the Galois group Gal(F/F ) to the Langlands dual group GL. It was originally introduced in the case when F is a number field or the field of rational functions on a curve over a finite field [1]. Recently A. Beilins...

متن کامل

Langlands Duality for Finite-dimensional Representations of Quantum Affine Algebras

We describe a correspondence (or duality) between the q-characters of finite-dimensional representations of a quantum affine algebra and its Langlands dual in the spirit of [6, 4]. We prove this duality for the Kirillov–Reshetikhin modules. In the course of the proof we introduce and construct “interpolating (q, t)-characters” depending on two parameters which interpolate between the q-characte...

متن کامل

Reciprocity Algebras and Branching for Classical Symmetric Pairs

We study branching laws for a classical group G and a symmetric subgroup H . Our approach is through the branching algebra, the algebra of covariants for H in the regular functions on the natural torus bundle over the flag manifold for G. We give concrete descriptions of certain subalgebras of the branching algebra using classical invariant theory. In this context, it turns out that the ten cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operator theory

سال: 2021

ISSN: ['0255-0156', '2296-4878']

DOI: https://doi.org/10.1007/978-3-030-51945-2_26